

Hindalco Industries Limited Unit – Birla Copper Dahej

<u>Team Members –</u>

1) Pankaj Jain

COPPER

- 2) Naresh Purohit
- 3) Krunal Patel
- 4) Jitendra Tur

About Birla Copper - Overview

- One of the world's largest custom smelters at a single location
- Captive Jetty (Dahej Harbor & Infrastructure Ltd, a wholly owned subsidiary)
- State-of-art copper facility comprises a world-class copper smelter producing
- Major products of Birla copper are Cathode, and Copper Casting rod.

Capacity spectrum

5 LPTA Copper Smelter & Refinery

135 MW Co-Generation Power Plant

12 TPA Gold, 105 TPA Silver Precious Metals

Manufacturing Process

Technology / Specification on Major Sections

Major Equipment	Quantity (nos.)	Unit	Capacity	OEM / Technology
Copper Smelters	2	КТРА	400	Mitsubishi & Outotech (Metso)
Sulphuric Acid Plant	2	MT/day	4650	Outokumpu & MECS
Refineries (Cathode)	2	КТРА	500	Glencore
Copper Casting Rod	2	КТРА	364	Southwire & SMS (Contirod)
Co-generation Power Plant	2	MW	135	TKIL & LMZ
Oxygen plant	5	TPD	1960	Linde & Airliquide
Water treatment (DM water, Soft water etc.)	2	M3/day	47,580	Thermax & Ion Exchange
Effluent treatment plant	2	MT/day	4500	Outukumpu

Production Data of FY 2021-24

Parameters	Year	Name of Product	Unit of Production	Production Quantity
Major Product	2021-22	Cathode	КТРА	359
Major Product	2022-23	Cathode	КТРА	407
Major Product	2023-24	Cathode	КТРА	368
Product	2021-22	Copper Casting Rod	КТРА	225
Product	2022-23	Copper Casting Rod	КТРА	268
Product	2023-24	Copper Casting Rod	КТРА	283

Energy Consumption Data of FY 2021-24

Parameters	Unit of Production	FY 2021-22	FY 2022-23	FY 2023-24
Annual Electrical Energy Consumption	Million KWH	625	685	632
Annual Thermal Energy Consumption (Including coal used in power)	Giga kcal	2210	2225	2017
Specific Electrical Energy Consumption	MWh/MT	1.07	1.01	0.97
Specific Thermal Energy Consumption (Including coal used in power)	M kcal/MT	3.78	3.29	3.10
Total Specific Energy Consumption (Excluding coal used in power)	GJ/MT	7.71	7.37	7.28

Overall Energy and SEC

* Total Sp. energy excludes thermal energy of coal used in power.

* Specific thermal energy includes coal used in power.

- Specific electric & thermal energy consumption is gradually decreasing year on year.
- Overall reduction in specific energy consumption is 6% from FY 22 to FY 24.
- Annual electric and thermal energy was up in FY 23 due to increase in production.

National & Global Benchmark

NATIONAL BENCHMARK

GLOBAL BENCHMARK

Name of the Company	HINDALCO - BIRLA COPPER	Name of the Company	Aurubis
Location of Unit	DAHEJ	Location of Unit	Germany
Total SEC (FY 22)	7.71 GJ / MT	Total SEC (FY 22)	7.58 GJ / MT

Source – Annual Report of Hindalco FY 22

Source – Annual Report of Aurubis FY 22

Energy Saving Projects - Overall

Year	No. of energy Saving Projects	Investment (INR Million)	Electrical Energy Saving (Million kWh)	Total Saving (INR Million)
FY 2020-21	16	86	3.47	29.6
FY 2021-22	9	53.2	3.16	19.3
FY 2022-23	14	112	5.24	48.4

Major Energy Saving Projects of FY 2021-24

Year	Name of energy Saving Projects	Investment (INR Million)	Electrical Saving (Million kWh)	Thermal Saving (Million Kcal)	Total Saving (INR Million)	Payback Period (In months)
FY 2021-22	Oxygen Plant upgradation - Cold box major work along with perlite power charging.	30	6.17	-	61	5.9
FY 2022-23	Upgradation of cell house flexible bus bar, Insulator to minimize cell house bus bar (mV drop) power loss	15.65	0.45	-	52.08	4
FY 2023-24	DOC burner installed for uniform and effective heat supply and operation parameters optimized for effective melting.	30	_	4334.6	84	4

Innovative Project 1, Category 'C'.

Name of the Project	DOC burner installed for uniform and effective heat supply and operation parameters optimized for effective melting
Brief description on why innovative	With this project FO emission completely eliminated with 27% carbon footprint reduction. Production also increased by 7000 MT. Refractory life doubled compared to previous
Trigger for implementing the project	 Lower refractory life & lower melting rate of SMF. Bottom build-up of SMF Improper Combustion of fuel – leads to black smoke in SMF High fuel consumption in SMF Improper suction – The higher volume of flue gas to achieve req combustion. Frequent damage of AF mouth refractory.
Replication Potential	Replicated in 6 nos. Anode Furnace Replicable at Global Level
How and What Impact Created.	 Reduction in energy consumption of 273555 kwh/annum. FO emission eliminated with 27% carbon footprint reduction. Production increased by 7000 MT. Cost Benefit – Total Investment – Rs. 300 Lakhs. Annual Saving - Rs. 840 Lakhs.

Project -01, Dilute Oxygen Combustion (DOC)

- Flameless oxygen-enriched combustion burner for heating
- Low-cost way to convert burners from Air-fuel to Oxy-fuel systems
- Environment friendly

Innovative Project 2, Category 'B'.

Name of the Project	Operational Efficiency Improvement by Digitalizing PS Converter process using OPC System
Brief description on why innovative	Traditionally, determining process endpoints in metallurgical Converter operations relies on manual observation and empirical knowledge. By leveraging digitalization techniques, such as spectrum analysis of flame signals, the accuracy and precision of endpoint determination is significantly improved.
Trigger for implementing the project	 No online process insight. The operator observes the process through flame behavior, color, dust color, punch rod samples, spitting samples.
Replication Potential	It can be replicable at Global Level.
How and What Impact Created.	 Quality - no premature slag formation resulting blister quality improvement (4% increase in blister quality after implementation) Process - Avg. cold dobing increased from 39 MT/blow to 49 MT/blow. Copper loss in converter slag is less than 5%. Cost - additional liquidation of revert @ 5132 MT helped in releasing 200 Cr working capital & saving of 20 Cr recurring interest till June'2024.

Project -02, Digitalizing PS Converter process using OPC System

Innovative Project 3, Category 'D'.

Name of the Project	Replacement of the Mother Blank at Refinery to Improve Cathode Quality and Enhance Current Efficiency
Brief description on why innovative	This project introduces an innovative approach to refining processes by focusing on the replacement of the "Mother Blank" — a critical component used in the production of cathodes. The innovation lies in the advanced materials and design enhancements incorporated into the new Mother Blank. These improvements are expected to significantly elevate cathode quality and increase current efficiency in the electrolysis process.
Trigger for implementing the project	 Persistent issues with cathode quality affecting overall production efficiency. Observed decline in current efficiency due to wear and tear of the existing Mother Blanks. New technology that promise significant improvements in performance.
Replication Potential	Scalability and Versatility of technology at various refineries & electrolysis process.
How and What Impact Created	 Improved cathode gradation (GB + PG) grade from 74% in FY 22 to 88% after project implementation. Improved current efficiency from 90% in FY 22 to 94% in FY 24 (Optimum – 97%). Reduction in Sp. Power consumption from 478 kwh/MT in FY 22 to 416 kwh/MT in FY24. Reduced maintenance costs and improved overall productivity.

Project -03, Improved Current Efficiencies increased Cathode Quality

Renewable Energy Sources - Onsite

Year	Source (Solar, Wind etc.)	Installed Capacity (In MW)	Total Generation (million kWh)	Total Consumption (million kWh)	Share % w.r.t to overall energy consumption	
FY21 – 22	Waste heat recovery	10 F	42.09	692.6	6.1	
FY 22 – 23	Waste heat recovery	10.5	43.42	749.08	5.8	Gert House Austra
FY 23 - 24	Waste heat (10.5 MW) & Roof top Solar (0.11 MW)	10.61	39.28	690.9	5.7*	
FY 24 – 25 (On going)	Rooftop & Floating solar	11.25	40.09	768.2	-	

- From FY 2023-24, Birla Copper started drawing power from offsite-wind solar hybrid plant.
- And, due to shutdown of smelter 3, waste heat recovery is in downward trend.

Renewable Energy Sources – Off site

Year	Source (Solar, Wind etc.)	Installed Capacity (In MW)	Total Generation (million kWh)	Total Consumption (million kWh)	Share % w.r.t to overall energy consumption
FY 21 - 22	-	-	-	-	-
FY 22 - 23	-	-	-	-	-
FY 23 - 24	Wind Solar Hybrid (PPA Mode)	20	72	690.9	10.4
FY 24 – 25 (On going)	Wind Solar Hybrid (PPA Mode)	30.5	154	768.2	20.04

Particular's	Unit	Values (FY 24)
Total Requirement of plant	MW	79
Plant Generation + GEB	MW	65
Total RE + WHR Share (Onsite & Offsite)	MW	14*
% of RE w.r.t total consumption	%	17.7
RPO Obligation (FY 2016)	%	9

* It includes Waste heat recovery, On site Rooftop and Offsite hybrid (On going projects Excluded)

GHG Inventorisation

Parameters		FY 2021 - 22	FY 2022 - 23	FY 2023 - 24
Scope 1 Emission (direct emission from fuels used)	t CO2/Equivalent Product	2.24	1.92	1.91
Scope 2 Emission (indirect emission from grid electricity)	t CO2/Equivalent Product	0.38	0.43	0.32
Scope 3 Emission (employee commuting, business travel, purchased goods)	t CO2/Equivalent Product	-	_	_
Total Emission	t CO2/Equivalent Product	2.61	2.41	2.23

Carbon Footprint – Continuously down trend year on year

ADITYA BIRLA HINDA.CO

CO₂ emission reduced by 15% from FY'22 to FY'24 and further 35% emission will be reduced by FY'27.

* All fig in t $CO_2/t CU$

Short Term Goals	Long Term Goals	Action Plan	
 35 % carbon footprint reduction by FY 2026-27 against FY 24. Increase % of RE power capacity w.r.t total demand. Biomass blending with coal in own generation. Biodiesel blending in all heavy equipment's used in plant. 	1) Net zero Carbon footprint till year 2050.	 100 % RE power. Replacement of carbon-based fuel to cleaner fuel. Replacement of fuel-based vehicle to Electric vehicle. Focus on efficiency improvement. Digital internation for improving process efficiency. Recycling of scrap & improving the quality of refractory bricks. 	

EMS System for Electrical Energy

EMS	Description	
Enterprise Level Energy Monitoring System	 In Birla copper, we have enterprise level EMS system for – Efficient energy Mapping for monitoring & Control across plant. Direct connectivity with ERP for Sp. Energy monitoring & Control Equipment performance monitoring and efficiency control Fast Response & Extended view for multiuser Till now, Total 104 Nos Old Meter replaced (out of 433 Meters) & 20 Nos Gateway replaced. Complete Software Upgradation done (10,000 Tags) All Meters connectivity with new system established Report Generation started from new system. 	
	Challenges – 1) Interoperability 2) Complexity of analytics	
Challenges faced and Upgradation done during Implementation	 Upgradation – 1) Efficient energy Mapping for monitoring & Control across plant. 2) Direct connectivity with ERP for Sp. Energy monitoring & Control. 3) Automatic Report Generation. 	

Trends available for all individual meter and parameter for different time scales.

EMS System for Thermal Energy

EMS	Description	
Enterprise Level Energy Monitoring System	In Birla copper, we have Two RLNG line(Gail and GSPL) each line two skid for smooth plant operation. Daily nomination of gas consumption given by plant before 11:00 in Birla copper portal(BCKM). And nomination submitted in Gail and GSPL site before 16:00 as per requirement. Continue flow and Pr. measurement in online DCS system. Daily joint ticket reporting of consumption pattern. Leakage alarm system installed in both LNG skid. Daily reporting of gas composition on next day. Advance monthly planning done for gas contract booking. FO tank level and pump Pr. showing in DCS.	
Challenges faced and Upgradation done during Implementation	 Challenges – Complexity in nomination vs consumption pattern. Upgradation – 1) Efficient energy Mapping for monitoring & Contro across plant. 2) Direct connectivity with ERP for Sp. Energy monitoring & Control. 	

EMS System & other requirements

Particulars	Yes / No & Details	
Is your plant ISO 50001 certified?	Yes	
Is your plant GreenCo certified?	No	
Is LCA Conducted?	No (Initiation from Oct 24)	
Learnings from previous CII energy award or any other award program	 Networking Opportunities. Exposure to new ideas and technologies. Adoption of latest technology. Engagement with different perspective. Inspiration. Understanding educational context. 	

NET ZERO Commitment

Particulars	Details	
Net Zero Target year by organization	2050	
Roadmap for achieving the target	 Focus on efficiency improvement Digital internation for improving process efficiency. Focus on increasing renewable power. Replacement of carbon-based fuel to cleaner fuel. Replacement of fuel-based vehicle to Electric vehicle. Recycling of scrap & improving the quality of refractory bricks. 	
Net Zero Action plan	 Laying of 440KV transmission line for 100% renewable power. Conversion of all FO based fuel to LNG based fuel followed by replacement of LNG with a cleaner fuel. Installation of EV charging station. Use of Bio-diesel and Bio-CNG in HEMM. 	
Voluntary Initiatives / Commitments	 Roof top solar installation. Floating Solar installation. Waste hear recovery. Bio-diesel and Bio-CNG use. 	

Awards / Achievements / Acknowledgement

Award Title / Category	Acknowledge by	
Best Captive Thermal Power plant	CEE (Council of Enviro Excellence) - 2022	
Renewable Integration & Co-generation plant of the year		
Sustainable performance best energy efficient unit CPP Coal 50 to 135 MW category.	Efficient Award - 2023	
Front runner awards for sustainability	Frost and Sullivan - 2023	
Great Unit to work	Hindalco : Reprism	
Gold Award for NAMC	International Research Institute of Manufacturing	
Operation & Environment Excellence (50-135 MW category)	CEE (Council of Enviro Excellence) - 2023	
Safety First Award	Hindalco	

Hindalco Industries Limited Unit: Birla Copper, Dahej

We Manufacture Materials that Make the World GREENER - STRONGER - SMARTER

Thanks

Contact Details – Email – <u>pankajk.jain@adityabirla.com</u> Contact No - 9826152532